首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2227篇
  免费   273篇
  国内免费   394篇
  2024年   5篇
  2023年   45篇
  2022年   58篇
  2021年   155篇
  2020年   114篇
  2019年   170篇
  2018年   121篇
  2017年   83篇
  2016年   115篇
  2015年   149篇
  2014年   197篇
  2013年   186篇
  2012年   252篇
  2011年   218篇
  2010年   123篇
  2009年   143篇
  2008年   123篇
  2007年   106篇
  2006年   74篇
  2005年   88篇
  2004年   71篇
  2003年   63篇
  2002年   46篇
  2001年   43篇
  2000年   33篇
  1999年   19篇
  1998年   15篇
  1997年   11篇
  1996年   19篇
  1995年   3篇
  1994年   7篇
  1993年   6篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1989年   4篇
  1988年   2篇
  1987年   4篇
  1986年   3篇
  1985年   5篇
  1984年   2篇
  1983年   3篇
  1980年   3篇
  1957年   1篇
排序方式: 共有2894条查询结果,搜索用时 15 毫秒
1.
Lu Chen  Shuqiang Li  Zhe Zhao 《ZooKeys》2015,(541):41-56
One new genus of the spider subfamily Coelotinae, Flexicoelotes gen. n., with five new species is described from southern China: Flexicoelotes huyunensis sp. n. (female), Flexicoelotes jiaohanyanensis sp. n. (male and female), Flexicoelotes jinlongyanensis sp. n. (male and female), Flexicoelotes pingzhaiensis sp. n. (female), Flexicoelotes xingwangensis sp. n. (male and female).  相似文献   
2.
3.
基于指标自动筛选的新疆开孔河流域生态健康评价   总被引:1,自引:0,他引:1  
汪小钦  林梦婧  丁哲  周珏  汪传建  陈劲松 《生态学报》2020,40(13):4302-4315
生态健康评价对了解区域生态健康状况和促进区域可持续发展具有重要意义,如何自动筛选出能反映生态系统特性的重要指标,是生态健康定量评估的关键问题。基于压力-状态-响应(PSR,Press-State-Response)框架和生态等级网络框架(EHN,Ecological Hierarchy Network),通过文献调研和因果分析建立要素层与指标层之间的交叉联系,构建了生态健康评价"网状"指标体系;在保证指标体系完备性基础上,通过结合主成分分析和熵权法的候选指标权重的客观计算,基于目标优化理论构建了评价指标的自动筛选模型,并基于中选指标计算了新疆开孔河流域2001—2017年生态健康指数(EHCI,Ecological Health Comprehensive Indexes),分析其空间分异和时间变化特征。结果表明:利用所建立的评价指标自动筛选模型,开孔河流域生态健康评价指标由31个候选指标自动筛选出了17个中选指标,用54.8%的指标表达了85.98%的信息,中选的17个指标在干旱/半干旱区域有关文献中应用较多,使用频次比例都在20%以上,其中归一化植被指数(NDVI,Normalized Difference Vegetation Index)、年降水量和植被覆盖度(FVC,Fractional Vegetation Coverage)3个指标的使用频次百分比均超过了50%,说明指标自动筛选模型的合理性;开孔河流域空间分布差异显著,总体上西北高、东南低,东南部和中部绿洲区外围生态健康状况较差,西北部河谷地带和中部两大绿洲区生态健康状况较好;17年来,流域生态质量整体趋于改善,显著改善区域占10.26%,远高于显著退化的1.61%,显著改善区域以孔雀河绿洲最为明显。开孔河流域生态健康的总体好转趋势说明区域生态综合治理取得一定成效。  相似文献   
4.
Graph representations have been widely used to analyze and design various economic, social, military, political, and biological networks. In systems biology, networks of cells and organs are useful for understanding disease and medical treatments and, in structural biology, structures of molecules can be described, including RNA structures. In our RNA-As-Graphs (RAG) framework, we represent RNA structures as tree graphs by translating unpaired regions into vertices and helices into edges. Here we explore the modularity of RNA structures by applying graph partitioning known in graph theory to divide an RNA graph into subgraphs. To our knowledge, this is the first application of graph partitioning to biology, and the results suggest a systematic approach for modular design in general. The graph partitioning algorithms utilize mathematical properties of the Laplacian eigenvector (µ2) corresponding to the second eigenvalues (λ2) associated with the topology matrix defining the graph: λ2 describes the overall topology, and the sum of µ2′s components is zero. The three types of algorithms, termed median, sign, and gap cuts, divide a graph by determining nodes of cut by median, zero, and largest gap of µ2′s components, respectively. We apply these algorithms to 45 graphs corresponding to all solved RNA structures up through 11 vertices (∼220 nucleotides). While we observe that the median cut divides a graph into two similar-sized subgraphs, the sign and gap cuts partition a graph into two topologically-distinct subgraphs. We find that the gap cut produces the best biologically-relevant partitioning for RNA because it divides RNAs at less stable connections while maintaining junctions intact. The iterative gap cuts suggest basic modules and assembly protocols to design large RNA structures. Our graph substructuring thus suggests a systematic approach to explore the modularity of biological networks. In our applications to RNA structures, subgraphs also suggest design strategies for novel RNA motifs.  相似文献   
5.
6.
Previous studies on spinal cord injury (SCI) have confirmed that percutaneous photobiomodulation (PBM) therapy can ameliorate immunoinflammatory responses at sites of injury, accelerate nerve regeneration, suppress glial scar formation and promote the subsequent recovery of locomotor function. The current study was performed to evaluate a large‐animal model employing implanted optical fibers to accurately irradiate targeted spinal segments. The method's feasibility and irradiation parameters that do not cause phototoxic reaction were determined, and the methodology of irradiating the spinal cord with near‐infrared light was investigated in detail. A diffusing optical fiber was implanted above the T9 spinal cord of Bama miniature pigs and used to transfer near‐infrared light (810 nm) onto the spinal cord surface. After daily irradiation with 200, 300, 500 or 1000 mW for 14 days, both sides of the irradiated area of the spinal cord were assessed for temperature changes. The condition of the spinal cord and the position of optical fiber were investigated by magnetic resonance imaging (MRI), and different parameters indicating temperature increases or phototoxicity were measured on the normal spinal cord surface due to light irradiation (ie, heat shock responses, inflammatory reactions and neuronal apoptosis), and the animals' lower‐limb neurological function and gait were assessed during the irradiation process. The implanted device was stable inside the freely moving animals, and light energy could be directly projected onto the spinal cord surface. The screening of different irradiation parameters preliminary showed that direct irradiation onto the spinal cord surface at 200 and 300 mW did not significantly increase the temperature, stress responses, inflammatory reactions and neural apoptosis, whereas irradiation at 500 mW slightly increased these parameters, and irradiation at 1000 mW induced a significant temperature increase, heat shock, inflammation and apoptosis responses. HE staining of spinal cord tissue sections did not reveal any significant structural changes of the tissues compared to the control group, and the neurological function and gait of all irradiated animals were normal. In this study, we established an in‐vivo optical fiber implantation method, which might be safe and stable and could be used to directly project light energy onto the spinal cord surface. This study might provide a new perspective for clinical applications of PBM in acute SCI.  相似文献   
7.
8.
Green crab (Scylla serrata) alkaline phosphatase (EC 3.1.3.1) is a metalloenzyme, each active site in which contains a tight cluster of two zinc ions and one magnesium ion. Unfolding and inactivation of the enzyme during denaturation in guanidinium chloride (GuHCl) solutions of different concentrations have been compared. The kinetic theory of the substrate reaction during irreversible inhibition of enzyme activity previously described by Tsou [(1988),Adv. Enzymol. Related Areas Mol. Biol. 61, 381–436] has been applied to a study on the kinetics of the course of inactivation of the enzyme during denaturation by GuHCl. The rate constants of unfolding and inactivation have been determined. The results show that inactivation occurs before noticeable conformational change can be detected. It is suggested that the active site of green crab alkaline phosphatase containing multiple metal ions is also situated in a limited region of the enzyme molecule that is more fragile to denaturants than the protein as a whole.  相似文献   
9.
Mosquito viruses cause unpredictable outbreaks of disease. Recently, several unassigned viruses isolated from mosquitoes, including the Omono River virus (OmRV), were identified as totivirus-like viruses, with features similar to those of the Totiviridae family. Most reported members of this family infect fungi or protozoans and lack an extracellular life cycle stage. Here, we identified a new strain of OmRV and determined high-resolution structures for this virus using single-particle cryo-electron microscopy. The structures feature an unexpected protrusion at the five-fold vertex of the capsid. Disassociation of the protrusion could result in several conformational changes in the major capsid. All these structures, together with some biological results, suggest the protrusions’ associations with the extracellular transmission of OmRV.  相似文献   
10.
The endoplasmic reticulum (ER) is a continuous membrane network in eukaryotic cells comprising the nuclear envelope, the rough ER, and the smooth ER. The ER has multiple critical functions and a characteristic structure. In this study, we identified a new protein of the ER, TMCC1 (transmembrane and coiled-coil domain family 1). The TMCC family consists of at least 3 putative proteins (TMCC1–3) that are conserved from nematode to human. We show that TMCC1 is an ER protein that is expressed in diverse human cell lines. TMCC1 contains 2 adjacent transmembrane domains near the C-terminus, in addition to coiled-coil domains. TMCC1 was targeted to the rough ER through the transmembrane domains, whereas the N-terminal region and C-terminal tail of TMCC1 were found to reside in the cytoplasm. Moreover, the cytosolic region of TMCC1 formed homo- or hetero-dimers or oligomers with other TMCC proteins and interacted with ribosomal proteins. Notably, overexpression of TMCC1 or its transmembrane domains caused defects in ER morphology. Our results suggest roles of TMCC1 in ER organization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号